Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks
نویسندگان
چکیده
BACKGROUND Nanoparticles with different sizes, shapes, and surface properties are being developed for the early diagnosis, imaging, and treatment of a range of diseases. Identifying the optimal configuration that maximizes nanoparticle accumulation at the diseased site is of vital importance. In this work, using a parallel plate flow chamber apparatus, it is demonstrated that an optimal particle diameter (d(opt)) exists for which the number (n(s)) of nanoparticles adhering to the vessel walls is maximized. Such a diameter depends on the wall shear rate (S). Artificial neural networks are proposed as a tool to predict n(s) as a function of S and particle diameter (d), from which to eventually derive d(opt). Artificial neural networks are trained using data from flow chamber experiments. Two networks are used, ie, ANN231 and ANN2321, exhibiting an accurate prediction for n(s) and its complex functional dependence on d and S. This demonstrates that artificial neural networks can be used effectively to minimize the number of experiments needed without compromising the accuracy of the study. A similar procedure could potentially be used equally effectively for in vivo analysis.
منابع مشابه
Ratio of Drug/carrier as Dominant Factor in Determining Size of Doxorubicin-Loaded Beta-1,3- Glucan Nanoparticles: An Artificial Neural Networks Study
Size of nanoparticles is an important parameter in determining many of their properties. In this work, nanoparticles of β-1,3-glucan containing doxorubicin (Dox) in conjugated and unconjugated forms (Con-Dox-Glu and Un-Dox-Glu, respectively) were prepared. Then, artificial neural networks (ANNs) were used to find the effect of different formulation/processing parameters on their particle size, ...
متن کاملA Detailed Investigation of Particulate Dispersion from Kerman Cement Plant
The aim of this study was to investigate the particulate dispersion from Kerman Cement Plant. The upwind – downwind method was used to measure particle concentration and a cascade impactor was applied to determine particle size distribution. An Eulerian model, Gaussian plume model and an artificial neural network have been used to compute and predict concentration of PM10 from Ke...
متن کاملModelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network
Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...
متن کاملOptimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm
This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...
متن کاملOptimizing of Iron Bioleaching from a Contaminated Kaolin Clay by the Use of Artificial Neural Network
In this research, the amount of Iron removal by bioleaching of a kaolin sample with high iron impurity with Aspergillus niger was optimized. In order to study the effect of initial pH, sucrose and spore concentration on iron, oxalic acid and citric acid concentration, more than twenty experiments were performed. The resulted data were utilized to train, validate and test the two layer artificia...
متن کامل